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The technology of thermoforming under creep and superplasticity conditions is finding increasing application in machine 

building for producing articles of  a preset shape. After a part is made there are residual stresses in it, which lead to its warping. 

To remove residual stresses, moulded articles are usually exposed to thermal fixation, i.e., the part is held in compressed state 

at a certain temperature. Thermal fixation is simply the process of residual stress relaxation, following by accumulation of total 

creep in the material. Therefore the necessity to develop engineering methods for calculating the time of thermal fixation and 

relaxation of residual stresses to a safe level, not resulting in warping, becomes evident. 

Below we present an approximate method of calculation of stress-strain state of a body during relaxation. Here we used 

a system of equations which describes a material's creep, simultaneously taking into account accumulation of  damages in it. 

Let us consider an arbitrary body (a structure element) limited by a surface S and referred to Cartesian rectangular 

system of coordinates x k (k = 1, 2, 3). We assume that a part of the surface is free from external loads T i (i = 1, 2, 3). Then 

(rijv j = O. (1) 

On the other part of the surface S u (S = S T + S u )  the constants of displacement 

,~,(.r k,t) = u, (xk) (2) 

and, consequently, of velocity (1 i = 0 are given. We also assume that the mass forces G i are equal to zero. Then 

Oa~s/Ox = 0. (3) 

Here aij are the components of  the stress tensor; u i are the components of the displacement vector; the point denotes the time 

derivative; and vj are direction cosines of  the external normal to the body's surface at the point under consideration. 

The creep problems with conditions (1)-(3) we will call according to [1, 2] the relaxation problems. Here we assume 

that the components of the total strain velocity tensor k, ij is the sum of the components of the elastic strain velocity tensors 

eij and total creep 15ij and connected with the components of the displacement velocity vector by the Cauchy relations 

2~.s = oi,,Ioxj + a~/ax,  (4) 

here for eij Hooke's law (eij = 3sij/2E) is valid, while for the total creep velocity the following law is valid [2, 3]: 

B S ('~*Ik2 S. 
1-2 ~ (5) 

P ' i  - -  (1 - c o ) "  2 S  2 " 

Here E is the modulus of elasticity; Sij = o'ij  - -  akkSij/3; 5ij is Kronecker's symbol; S 2 = sijsij/2 is the second invariant of the 
stress tensor; B1, n, m are the creep characteristics of the material; and r is the parameter of the material's damagability for 
which the kinetic equation has the form [2, 3] 
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(b = -2-2n .~c~*tv2/(1 - w) ' ,  o~(x~,0) = 0. (6) 

From (6) follows 

l~(x~,t) = II - 'f (m + 1)B2S~§ ]v~.,.~), 
0 

where tz(xk, t) = 1 - -  w(x k, t). From the condition w = 1 at a certain point with coordinates x k (or the whole region) we can 

determine the time t. when the body begins to be destroyed: 

t .  

f (m + 1)B2S~+I~dr = 1. 
o 

Thus, the solution of a relaxation problem taking into account the material's damagability during creep is reduced to 

determining functions Gij, 9ij, Pij, ui, w, t,, which at any moment of time up to the beginning of the body's destruction satisfy 

the system of equations (3)-(6) with boundary conditions (1) and (2). A direct solution of this system is difficult because it is 

nonlinear and nonstationary. That is why approximate methods, in particular the principle of minimum of an additional power 

of deformations or the energy theorem [1], are used in solving relaxation problems. Below we prefer the energy theorem. It 

states that for each solid body the power of external forces is equal to the power of internal forces, i.e., 

f (cr k o + crp,;)dV = f G,u,dV + f r,~t,dS. (7) 
Iz 1" S 

It is evident that for relaxation p_roblems (G i = 0, ui = 0 on S u, T i = 0 on ST) the right-hand side of (7) is zero. 
At the initial moment of time t = 0 we have elastic distribution of stresses cr~ in the body. Due to creep the stresses 

decrease with time, approaching zero. Solving relaxation problems without taking into account material damagability during 

creep, we usually seek for an approximate solution in the form [1, 2] 

,:,~(x,,,t) = o,,,(x,,)p(t), (8) 

where relaxation factor after standard procedure takes the form 

PU) = ll + (n - l)11~Et f (S~)C"§ f S~dV 1 -v(''-l'. (9) 
i ,  | .  

The damage accumulation process in a material considerably complicates the situation. Indeed, accumulated damages 

influence the creep velocity (this is reflected in the creep law (5)) and constantly facilitate redistribution of stresses [2]. Running 

ahead we note that the results of solving specific relaxation problems (for instance [4]) indicate an insignificant value of 

accumulated damages in the material and a constant reduction of the intensity of this accumulation process. One would think 

that in terms of this remark the damagability parameter in characteristic equations can be neglected. Nevertheless it seems 

unsuitable. Effectively, the damagability parameter is an "indicator" of a sort, whose value at any moment characterizes 

"structural state" of a material in the context of phenomenology. The less is the value the more is, naturally, a residual useful 

life of the material. Obviously, in similar problems there also appears a problem of determining such external temperature-force 

actions that as few as possible damages would accumulate in the material during preliminary strain (forming, forming with 

subsequent thermal fixation). 

We propose to look for an approximate solution of  a relaxation problem in terms of the process of  damage 

accumulation in the material in the same form as in solving of  the basic problem [5], namely 

aq(xk,t ) = ~~ ) + C(xk,t)c) O. (10) 

Here C is the hydrostatic component, which is determined with the use of the known method [5, 6] from the system of 

differential equations in partial derivatives 

aC Of cr o 
Ox q 8x. '~ 

1 1 (11) 
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with boundary condition C = 0 on the part of the surface S T. As in solving the basic problem [5], the function 

f(x~,t) = l~,(x,,t) I"~"/X(t). (12) 

Substituting (10) into (7) and (6), and taking into account (8), (9), (12), and Hooke's  law, we obtain after simple 

transformations a system of equations for finding unknown functions X(t) and/z(x t, t): 

Here 

V 

/W" = 1 - ~ (pX-~)~§ . 
': o j 

(13) 

(14) 

/3 = m n + m 0 t - g -  I) ; v =  
n +  r e ( n - g -  Z) ,fire+ ~) 

t." = [(m + 1)Bz(~) ~g+lv~ l-I " "  ="~2 ~(x , ) .  

In the general case the system of equations (13) and (14) admits of only numeric solution. We indicate one of the 

possible and simplest ways for solving this problem. Let us substitute (14) into (13). We obtain a differential equation with 
respect to function X(t), whose solution we will seek in the form of the series 

~e 

S(t) = I + 2 ak tk" 
k = l  

It is easy to show that the sum of ttiis series can be approximated by the expression 

1 t 

X(t) -- (1 - ~ fp*+'dr) ' ,  
0 

(15) 

where V = /3~; teGk); the coordinates ~k of the "median" by the volume point are found from the relation 

[~(Xk) lC"-na = f (~)("*nadV/ f S'flV. (16) 
I" V 

Substituting (15) into (14) and integrating, we obtain an a approximate expression for/~(x k, t). 

Thus, knowing X(t),/z(x k, t), we determine the function f(x k, t) from (12). Combining f(x k, t), (8), and (9) we find 

from (i0) the stressed state with an accuracy to the hydrostatic component C(x k, t). The hydrostatic component is calculated, 
as was pointed out above, from the system of differential equations in partial derivatives (11) with a boundary condition on 

the part of  the surface S T, The compatibility of this system is considered in each specific problem. If  a system is incompatible, 
then the hydrostatic component is determined by minimizing a discrepancy in compatibility equations in the mean square. 

From the known field of stresses O'ij w e  find from (6) the distribution of the accumulated damages in a body at any 
moment of time, and from (5) and Hooke's law we f'md lbij, eij and, consequently, the field of total strain velocities 5 ij = 

tSij + kij. From the known strain velocities we determine from (4) the components of the displacement velocity vector fli- To 
integrate system (4) it is necessary to fulfil six conditions of strain velocity continuity (Saint Venant continuity conditions). 

Obviously, these conditions are fulfilled only approximately, as in similar problems without regard to the process of  damage 

accumulation in a material [1]. The components of  the displacement vector are determined in the following way: 

u,(x~,t) = u,(xk,0) + f/~,(xk r)dr. 
0 

As an example let us consider the problem of trimming of a thin walled gas-turbine engine disc of  constant thickness. 
After mechanical treatment the disc, as a rule, has initial deflection w 0, which increases with time due to relaxation of residual 

self-balancing stresses, i.e., warping of the disc takes place. The disc under consideration has the following geometrical 

dimensions: the internal radius r 1 = 100 mm, the external radius r 2 = 300 mm, the disc thickness h = 3 mm. According to 
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the existing norms the permissible deflection of the disc median plane must not exceed 3 mm ([w] = 3 mm). Analysis of the 

measurements of the warped discs' initial deflection shows that the latter is, as a rule, a function of only the radius r of the 

disc and exceeds considerably the permissible value, i.e., max w 0 > [w]. Approximation of the initial deflection as a function 
r 

of the radius has the form 

w 0 = wm~.CO:S 2r 2 

here Wma x _> 3 m m .  Further w e  a s s u m e  Wma x = 5 m m .  

In actual practice warping is removed in the following way. A fmished disc, held in time, is placed into a die and 

loaded with a punch, so that the initial deflection at t = 0 becomes equal to zero at any r in the interval r 1 _< r <_. r 2, i.e., 

w0(r, 0) = 0. Then the loaded disc is placed into a reheating furnace and is held there in compressed state during a certain 

time h.  In this case always w(r, t) = 0 and initial stresses %e a,~, which are the sum of residual self-balancing stresses a r,  
t~ t/ % and stresses a r , % appearing as a result of loading the disc by a punch at t = 0, relax. After thermal fixation time t 1 the 

disc is unloaded, a residual deflection, if any, is measured and compared with the permissible one. Obviously, for a successful 

trimming of a disc it is necessary to know optimal time and thermal fixation temperature, for which purpose a relaxation 

problem should be solved. 

We present the results of solving such problem. The disc considered here is made of titanium alloy BT9. The 

experiments on elastoplastic strain and strain during creep enabled us to determine the corresponding characteristics of a 

material in the temperature range from 400 to 650~ For example, the temperature dependence of the modulus of elasticity 

has the form 

E = ( - 0 , 0 1  T + 12,30) �9 103 , 

where E, kg/mm2; T, ~ 

The thermal fixation temperature is agreed with the manufacturer and is set to be 550~ At this temperature the creep 

characteristics in terms of the system of equations (5) are: 

B l = 5 . 8 7  �9 10-~(  kgsec/mm2 ) - "  - h  - 1 ,  n = g =  4,  ra = 1 l ,  

B 2 = 0 . 2 5 5  �9 10-9(kgsec/mm2~) -(~+l) �9 h - 1 .  

The elastic field of stresses ar e, a e at t = 0 was determined, as was noted above, in the form 

0 e, = G't + (7"~, ~ = Os'l" + (7".~, 

The field of residual self-balancing stresses was assumed to be uniformly distributed along the disc thickness, moreover for 

radial stress a; the following approximation was used: 

[:z(r - r l ) ]  
o '  = 10 �9 sin 

L r , - q J  

and shearing stress a~ was found from the equilibrium equation 

da '  %' - a 
+ ~" - 0 .  

dr  r 

The values of residual stresses, calculated with the help of the approximation indicated above, are in good agreement 

with check measurements. 

It was suggested that during loading of disc at the initial moment of time t = 0 the Kirchhoff-Laves hypothesis of 

plane cross-sections is met and the strains t r, er are determined by the expressions 

2 

e , = ~ r  + 2 (dr  ) + dr-"Tz, 

U 1 d w  
= - -  + - - - - z ,  

e ,  r r d r  
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where u(r) is the displacement along the r axis of the disc in the median plane and the z axis is perpendicular to the median 

plane. Loading of disc at t = 0 was simulated by the action of a uniformly distributed load q(r). The boundary conditions in 

this case can be written as a r = 0 for r = r 1, u = 0 for r = r 2. We think that Karman equations for axisymmetric plates [7] 

are valid: 

d h deP dw 
D ~ r ( V 2 w )  = ~p r dr dr '  

= 2r ) �9 

Here the cylindrical rigidity of the plate D = Eh3/12(1 - -  v 2) (v = 1/2); ~ is the Airy stress function; r is the load function; 

the operator V 2 1 d ( ; d  I 

= k 

The ultimate system of Karman equations together with the Kirchhoff-Laves  plane cross-section hypothesis and the 

indicated boundary conditions offer a way to determine the stress-strain state of a disc at the moment t = 0. Note that here 

and below in numerical calculation we reduced the boundary problem for an ordinary third-order differential equation to the 

boundary problem for a system of the ordinary first-order differential equations, which was solved by the Godunov method 

of orthogonal run [8]. Here we integrated by the Runge-Kut ta  method of the fourth order. We added up (algebraically) the 

stresses a r, a~ thus determined with the residual stresses a r, a~ and for the initial moment we obtained an elastic field of 
c stresses aer, a~.  

e relax. We calculate stresses according to (10) at any moment of time. For t >__ 0 we have w(x k, t) = 0 and are and % 

First, using ar  e and a~ we determine from (9) the relaxation factor p(t) and from (8) we find the field of  stresses a ~ and a~ 

From (15) and (16) we find X(t). Substituting X, a ~ a ~ into (14) and integrating, we find ~(r, t). From (12) we find f(r, t) 

by the known X and/.t. Knowing f(r, t), a ~ a ~ we calculate from (10) ar(r, t) and %(r ,  t). The hydrostatic component in 

(10) is equal to zero because for the disc under consideration a plane stressed state is realized. 

Let us dwell on the calculation of a residual deflection after the process of thermal fixation of disc and its elastic 

unspringing (unloading). For the moment t = t 1 from the known field of stresses at(r, tl),  %(r ,  t 1) we find the distribution 

of the moments of  deflection Mr(r, t 1) and M~(r, tt) from the relations 

1~2 h,2 

M = f = f 
-J~2 -Jr2 

From the equilibrium equation 

a M  M - M 
r .  i- ~ Q  

dr r 

we have the law of  distribution of  the shearing force Q(r, tt). At the time t = t t we carry out an elastic unloading of the disc, 

for which purpose the load Q(r, t t) should be "removed" in each point of the disc. The residual deflection we find from the 

differential equation 
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d 
D - -  (V2w) = - Q(r, tl) 

dr 

with the boundary conditions that take into account a release of the disc contours M r = -Mr(r1,  tl) , M r = -Mr(r2,  tl) , w(r2, 
t 1) = 0. As an illustration Fig. 1 shows deflections after unloading for different values of time of the disc blade fixation 

(t 1 = 0; 0.5; 2; lines 1-4 denote 5 h). The dashed line shows a maximum permissible disc deflection [2] = 3mm. It is clear 

from the figure that thermal fixation time t 1 = 0.5 h for the given initial deflections w 0 would already suffice for the residual 

deflections to be within permissible values after the disc release. 
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